RESIDENTIAL SERVICE

STAND			: 31263					
60 ampere		125 ampere						
100 ampere		150 ampere						
			200 ampere					
Typical Branch Circuit Design.								
Maximum Load Ampere (Amax)	Wire Size		Voltage	Max. Distance (Dmax)				
12	14 AWG Copper		120	47'				
12	14 AWG Copper		240	95'				
16	12 AWG	Copper	120	56'				
16	12 AWG	Copper	240	113'				
24	10 AWG	Copper	120	60'				
24	10 AWG	Copper	240	120'				
40	8 AWG C	opper	240	115'				
52	6 AWG C	opper	240	140'				

(Interpolation between values permitted)

Example: 12 ampere on 14 AWG copper wire @ 120 volts max. distance 47' 6 ampere on 14 AWG copper wire @ 120 volts max. distance ?'

$$\begin{pmatrix} Amax \\ ----- \\ Amin \end{pmatrix} X \quad Dmax \qquad \begin{pmatrix} 12 \\ ----- \\ 6 \end{pmatrix} X \quad 47' = 94'$$

CONDUCTOR PROPERTIES (Based On NEC Table 310-16)					
Copper	Ampacity		Aluminum	Ampacity	
14	15		10	30	
12	20		8	40	
10	30		6	50	
8	50		4	65	
6	65		2	90	
4	85		1/0	120	
1	130		2/0	135	
2/0	175		4/0	180	

